Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 8(9): e1002952, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028359

RESUMO

Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3'-end, indicating that repression is coupled to 3'-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3'-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3'-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3'-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3'-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by Set1 is repression, achieved through promotion of 3'-end antisense transcription to achieve specific rather than global effects through two distinct mechanisms.


Assuntos
Histona-Lisina N-Metiltransferase , Metilação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcrição Gênica , Cromatina/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Oligorribonucleotídeos Antissenso/biossíntese , Oligorribonucleotídeos Antissenso/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS Genet ; 6(5): e1000964, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20502685

RESUMO

The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA-damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fase G1/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Northern Blotting , Imunoprecipitação da Cromatina , Ciclinas/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...